Astro News
- Recent Updates of Astro News
- Active Mercury(07/09)
- Hubble Status Report: Directly Observes a Planet Orbiting Another Star(01/09)
- A Non-trivial Answer to a Trivial Astronomical Question-The Origin Of Absolute Magnitude(07/08)
- Assault by a Black Hole(04/08)
- New Lakes Discovered on Titan(01/08)
- ˇ§Deviant Behaviourˇ¨ in the Solar System(10/07)
- Cosmic Ripples - Cosmic Microwave Background - CMB(07/07)
- Interplanetary Superhighway(04/07)
- Is Pluto a Planet?(01/07)
- Breathing Moonrocks(10/06)
- My Thoughts on the Theory of Relativity, Quantum Mechanics, Superstring Theory and Dark Matter(07/06)
- Space-time Vortex(04/06)
- Radio Astronomy(01/06)
- Neutrino Astronomy(10/05)
- The Active Earth(07/05)
- What is Dark Energy?(04/05)
- The Mysterious Black Holes(01/05)
- Intermediate-Mass Black Holes And Quasisoft X-Ray Sources(10/04)
- Time Travel: From a Scientific Approach(07/04)
- What is Astrobiology?(04/04)
- Black Hole: From Fantasy To Reality (II)(01/04)
- Black Hole: From Fantasy To Reality (I)(10/03)
- From The Oldest Light In The Universe To The Fate Of The Universe(7/03)
- The Cosmic HERO(4/03)
- Quaoar - the Tenth Member of the Solar System?(1/03)
- The First Chinese Telescope in Space(10/02)
- Diamonds and Other Stardust(7/02)
- Supermassive Black Hole in Andromeda Galaxy(4/02)
- Detection of Solar Neutrinos(1/02)
- Simultaneous Multiple Wavwlength Observation(10/01)
- Celestial Distance(7/01)
- Solar-Terrestrial Relations(7/00)
- Fundamental Particles in Astronomy(4/00)
- The Solar Maximum in 2000(1/00)
- Hubble Constant(10/99)
- New Findings on Cosmology(7/99)
- Strange Stars(4/99)
- How Strong Stellar Magnetic Field Can Be?(1/99)

Important notices

Is Earth in a vortex of space-time?

We'll soon know the answer: A NASA/Stanford physics experiment called Gravity Probe B (GP-B) recently finished a year of gathering science data in Earth orbit. The results, which will take another year to analyze, should reveal the shape of space-time around Earth - and, possibly, the vortex.

Time and space, according to Einstein's theories of relativity, are woven together, forming a four-dimensional fabric called "space-time." The tremendous mass of Earth dimples this fabric, much like a heavy person sitting in the middle of a trampoline. Gravity, says Einstein, is simply the motion of objects following the curvaceous lines of the dimple.


An artist's concept of twisted space-time around Earth.

If Earth were stationary, that would be the end of the story. But Earth is not stationary. Our planet spins, and the spin should twist the dimple, slightly, pulling it around into a 4-dimensional swirl. This is what GP-B went to space to check.

The idea behind the experiment is simple: Put a spinning gyroscope into orbit around the Earth, with the spin axis pointed toward some distant star as a fixed reference point. Free from external forces, the gyroscope's axis should continue pointing at the star-forever. But if space is twisted, the direction of the gyroscope's axis should drift over time. By noting this change in direction relative to the star, the twists of space-time could be measured.

In practice, the experiment is tremendously difficult.

The four gyroscopes in GP-B are the most perfect spheres ever made by humans. These ping pong-sized balls of fused quartz and silicon are 3.8 cm across and never vary from a perfect sphere by more than 40 atomic layers. If the gyroscopes weren't so spherical, their spin axes would wobble even without the effects of relativity.

According to calculations, the twisted space-time around Earth should cause the axes of the gyros to drift merely 0.041 arcseconds over a year. An arcsecond is 1/3600th of a degree. To measure this angle reasonably well, GP-B needed a fantastic precision of 0.0005 arcseconds. It's like measuring the thickness of a sheet of paper held edge-on 160 km away.


One of the spherical gyroscopes of Gravity Probe B.

GP-B researchers invented whole new technologies to make this possible. They developed a "drag free" satellite that could brush against the outer layers of Earth's atmosphere without disturbing the gyros. They figured out how to keep Earth's penetrating magnetic field out of the spacecraft. And they concocted a device to measure the spin of a gyro without touching the gyro. 

Pulling off the experiment was an exceptional challenge. A lot of time and money was on the line, but the GP-B scientists appear to have done it.

ˇ§There were not any major surprises in the experiment's performance? says physics professor Francis Everitt, the Principal Investigator for GP-B at Stanford University. Now that data-taking is complete, he says the mood among the GP-B scientists is "a lot of enthusiasm, and a realization also that a lot of grinding hard work is ahead of us."

A careful, thorough analysis of the data is underway. The scientists will do it in three stages, Everitt explains. First, they will look at the data from each day of the year-long experiment, checking for irregularities. Next they'll break the data into roughly month-long chunks, and finally they'll look at the whole year. By doing it this way, the scientists should be able to find any problems that a more simple analysis might miss.

Eventually scientists around the world will scrutinize the data. Says Everitt, "we want our sternest critics to be us."

The stakes are high. If they detect the vortex, precisely as expected, it simply means that Einstein was right, again. But what if they don't? There might be a flaw in Einstein's theory, a tiny discrepancy that heralds a revolution in physics. 

First, though, there are a lot of data to analyze. Stay tuned.


The gyroscope accembly is placed inside lead bags, which in turn are placed inside a large cryogenic container called a "dewar" holding about 1,5000 litres of liquid helium. the helium cools the lead becomes a superconductor, thus blocking out Earth's magnetic field. The ambient magnetic field within these bags is reduced to less than 3 micro-gauss, which is about the same as in deep interstellar space.